BOWLAND MATHS

Fares not fair

Assessment Tasks

Task description

Pupils determine whether the rates for taxi fares, set by a local council, are fair in relation to the changing cost of fuel.

Suitability \quad National Curriculum levels 6 to 8

Time $\quad 45$ minutes to 1 hour
Resources Paper and calculator

Key Processes involved

- Analysing: Process the data to find the relationship between fuel cost and taxi fares.
- Interpreting and evaluation: Use findings to justify their recommended fare.
- Communicating and reflecting: Communicate findings effectively and explain recommendation clearly.

Teacher guidance

You might begin by showing the slides on a whiteboard and commenting:

- Even though taxi drivers are usually self employed, the taxi fares they can charge are not set by the drivers, but by their local Council. In 2008, taxi drivers in Surrey complained that the prices they were allowed to charge were not fair as the price of diesel fuel had gone up so much.
- The data shows the cost of fuel and the price of taxi fares over 8 years. Your task is to examine the drivers' claim and decide on a fair price for them to charge.

The task requires knowledge of proportionality.
During the task, the following probing questions may be helpful

- What method will you use to decide what would make a fair price?
- What does 'fair' mean?
- Are there different ways you could use the information to make your decision?
- The taxi drivers focus on the cost of their fuel; should there be other factors in deciding what would be a fair price?

Fares not fair!

Cabbies complain - "Fares are set too low"

In May 2008, taxi drivers in Surrey complained that they were not allowed to increase their taxi fares although the cost of fuel had risen.

The table shows how costs and prices have changed.

How prices changed

Average cost of one litre of diesel fuel Taxi fare (2 mile journey)

May 2000 82p
May 2001 79p
May 2002 77p
May 2003 78p
May 2004 83p
May 2005 90p
May 2006 92p
May 2007 97p
May 2008 125p

May 2000 £3.50
May 2001 £3.80
May 2002 £3.90
May 2003 £4.40
May 2004 £5.00
May 2005 £5.00
May 2006 £5.00
May 2007 £5.20
May 2008 £5.20

Fact:
Taxi fares are set by the Council

As diesel costs have increased so much, it seems reasonable that taxi fares should have been allowed to increase in May 2008.
How much would it have been reasonable to allow fares to increase?

Use the data to make your suggestion for what would be a fairer taxi fare for May 2008; Explain why.

Assessment guidance

Progression in Key Processes

Sample responses

Pupil A

Because in May 2000, they got $\$ 350$ and
the price of petrol was 82p. Now that petrol has increased 43 p, their pay should increase by about 50 p - which would take their pay to E4.00. Also, they have to pay for food and they should have given some money for food and drink-bringing it up to $\equiv 5.40$.

Comments

Pupil A starts with the changes per year in fuel costs and fares, but there is little evidence of insight into the values found. He works out the percentage increase in the fuel costs from 2000 to 2008 - but shows it as 52% not 152%. He does not use this, but reverts to using the cost difference between May 2000 and 2008. He shows an awareness that real life costs are based on more than the price of fuel, but the solution is simplistic and not justified.

Probing questions and feedback

- You worked out a percentage change; your solution would have been better if you had used that, ie by finding 52% of $£ 3.50$ and adding the answer to $£ 3.50$. You suggest $£ 1.40$ for food and drink, but why should that suddenly appear for 2008 ?

This pupil would benefit from tasks that probe his ability to reason mathematically. Working with another pupil might encourage him to reflect on his methods and his solutions.

Pupil B

```
myrrasons: I Look at zoo the difference
bettwen 2006 an d 2007 . The difference
    in fuel was \(S_{p}\). and the difference in
taxi fares was \(20 p\). So every \(S_{p}\) the
taxi fares was \(20 p\). So every \(S_{p}\) th
fuel goes up the taxi pares Shall
go up 20 . The difference in hold
from 2007 in fuel was 28 . So
there are 5,5 's in 28 . So that
means the fuel should go up圤.00."
    Then with the 3 left aver, a \(1 / 4\)
    of 20 is 5 . So \(i\) added five
pence.
which rung my total to \(\neq 6.25\)
```


Comments

Pupil B has used the change from 2006 to 2007 to inform his solution for 2008, but with no reference to the period before 2006. He uses proportional reasoning, but his understanding of fractions is insufficient to complete the method since he calculates one quarter of 20 p rather than three-fifths of 20 p.

Probing questions and feedback

- When solving a complex problem, remember to show evidence for your thinking; for example, why did you choose to work only with 2006, 2007 and 2008; what about earlier years?
- Why did you choose that particular method?

Practice at interpreting data sets would benefit this pupil, as would working with contexts that require an understanding of fractions.

Pupils C and D

Mimaun Percentage Change

$$
\begin{aligned}
& 3842007-0.82-0.79=0.03 \frac{\text { Change }}{\text { original }} \times 100 \\
& \frac{0.03}{0.82} \times 3002.6 .6 \% \quad(2 d p) \\
& \begin{array}{c}
3.90 \quad 2002-0.79-0.77=0.02(2 \alpha p) \\
0.02 \times 100-2.53 \%
\end{array} \\
& \frac{0.02}{0.79} \times 100=2.53 \% \\
& 4402003-0.01 \div 0.77 \times 100=1.30 \% \\
& 5002004-0.05 \div 0.78 \times 100=6.41 \% \\
& 2008-0.28-0.97 \times 100=28.87 \%
\end{aligned}
$$

diesel $2000-2008=\frac{0.43}{0.82} \times 100=52.44 \%$ fare - 2000-2008

$$
\frac{1.7}{3.5} \times 100=48.57 \%
$$

52.44% of 25.50 $=22.39$
Myreasons: The percentage change betaveen mar 2000 and May 2008 for I lite of diesel is:
$\left(\frac{0.43}{0.82}\right) \times\left(\begin{array}{l}\text { dive price difference })\end{array}\right.$ (the original cos $t \div 2000$)
52.43902439% (dp) 52.44%
The percentage, change for the fare cost for a 2 mise journey is:

$$
\begin{aligned}
& 1.7(\text { the price difference) } \\
& \frac{100}{3.5} \text { (the original cost -2000) }
\end{aligned}
$$

NOT EQUAL - The taxi drive ane covens out.

We then found 52.44% of ≥ 3.50 (the Lay 2000 price) which is $y=2.30$. We then added that to the price of fares in $2000(* 3.50)$.

So the rear amount that the taxi fare sherud be is $\& 5.80$!

Comments

Pupils C and D start by using differences in costs, but change to percentages. They find the percentage change for several years decide not to continue; their oral explanation was that: 'there isn't a pattern in the data, you can't see anything, so we think if we just work out what is happening from the beginning it will be simpler and clearer'. They then use their multiplicative method to compare how prices have changed from 2000 to 2007 and apply their findings to 2008 to find a justified conclusion. Most calculations are accurate, but not all. Their communication is clear, although there is no evidence of reflection on the task.

Probing questions and feedback

- When working on a complex problem, try to think about how well the mathematical model you are applying fits the real life situation; in this task you could have thought about whether basing the cost of a taxi fare only on the cost of diesel was appropriate.

These pupils enjoyed working on the task, seeing it as an exciting challenge. Providing them with extended open-ended tasks, such as a Bowland case study, would capitalise on this enthusiasm and should enable them to develop their skills further.

