BOWLAND MATHS

Hot under the Collar

Assessment Tasks

Task description

Pupils compare two rules for converting temperatures in Celsius to Fahrenheit, one accurate and one approximate.

Suitability \quad National Curriculum levels 7 to 8

Time 20 to 40 minutes
Resources Pencil, calculator and paper; rulers and graph paper available but provided only on request

Key Processes involved

- Representing: Select a way of comparing the two methods, for example, using a table or graph.
- Analysing: Explore the effect of varying the temperature; make accurate calculations or graphs, recording methods systematically. Deduce when the approximate method gives an answer that is too high.
- Interpreting and evaluating: Interpret their tables and graphs to solve the problem, relating their findings to the original context.
- Communicating and reflecting: Communicate their reasoning and findings clearly.

Teacher guidance

Check that pupils understand the context, for example you could show examples of key temperatures e.g. body temperature and temperature of freezer.

- Americans do not use metric units for temperatures, they use degrees Fahrenheit; in Europe, we measure temperature in Celsius or Centigrade.
- John and Anne have two different ways of converting from degrees Centigrade to degrees Fahrenheit.
- One says their method is accurate and the other says their method is near enough for most purposes.

Pupils can tackle this task in different ways, but they might be expected to:

- use algebraic and graphical methods to solve simultaneous linear equations in two variables.

Hot under the Collar

John and Anne are discussing how they change temperatures in degrees Celsius into degrees Fahrenheit.

John

I have an easier method: double the Celsius figure then add 30 . That is near enough for most purposes.

1. If the temperature is $20^{\circ} \mathrm{C}$, what would John make this in Fahrenheit? How far out would Anne be?
2. For what temperatures does Anne's method give an answer that is too high?

Assessment guidance

Progression in Key Processes

Sample responses

Pupil A

Comments

Pupil A correctly calculates the temperature in degrees Fahrenheit using John's rule. He makes an error using Anne's rule

Probing questions and feedback

- Please explain how you used Anne's method when the temperature is 20 degrees Centigrade?
- What are you asked to find out in the second question? What other temperatures could you try to see if Anne's method always gives too high a temperature?

Pupil B

2. 100° - the temperature of

This is by far inaccurate so is too high.

Comments

Pupil B correctly calculates the temperature in degrees Fahrenheit using both John's rule and Anne's rule. He makes calculations using both rules for $100^{\circ} \mathrm{C}$ and states that Anne's method gives an answer that is too high.

Probing questions and feedback

- What are you asked to find out in the second question? What other temperatures could you try to see if Anne's method always gives too high a temperature?
- How might you approach this in an organised way?

Pupil C

$20 \times 9=180 \div 5=36+32=68^{\circ} \mathrm{f}$
(2)

Lets sey 50
$50 \times 9=450<5=90+32=122^{\circ} \mathrm{f}$
$50 \times 2=100+32=132$
Sey $\frac{45}{49}=406 \div 5=81+32=113$ $45 \times 2+30=120 \quad 45$ is still too
$42 \times 9=378 \div 5=75.6+32=107.76$
$42 \times 2=84+30=14 \quad 42$ is still too
Sey 41
$41 \times 9 \div 5=-73.8+32=105.8$
$41 \times 2=82+30=112$
Sey 40
$40 \times 9=3605 \div 5=72+32=104$
$40 \times 2=80+30=110$
$39 \times 9 \div 5=70.2+32=102.2$
$39 \times 2+30=108$
$38 \times 9 \div 5=+32=100.4$
$38 \times 2+30=106$
$36 \times 9+5+32=96.8$
$36 \times 2+30^{9}=102$
$\begin{array}{ll}34 & \times 9+5+32=93.2 \\ 34 & \times 2+30=98\end{array}$
$28 \times 9 \div 5+32=82.4$
$28 \times 2+30=86$
$\begin{array}{ll}32 \times 9 & \times 5+32=8960 \\ 32 & 22+30=94\end{array}$
$30 \times 9+5+3290^{86}$
$30 \times 2+30=9$
$26 \times 9 \div 5+32=78.8$
$26 \times 2+30=82$
$25 \times 9 \div 5+32=$

Comments

Pupil C correctly calculates the temperature in degrees Fahrenheit using both John's rule and Anne's rule for 20 degrees Celsius. Pupil C makes many calculations using both rules, but her method, though systematic, is very long-winded and she needs to find a more efficient searching strategy. She does not relate her findings to the context.

Probing questions and feedback

- You have tried a number of temperatures working down from 50 to 25 and found that for each of them Anne's method gives too high a value. What other Celsius temperatures could you try?
- Can you think of a more efficient approach to compare the methods John and Anne used?

Pupil D

1) $20^{\circ} \times 9=180^{\circ} \mathrm{C}$

Anne
$\begin{array}{ll}180^{\circ} \mathrm{C} \div 5=36^{\circ} \mathrm{C} & 40^{\circ} \mathrm{C}+30=70^{\circ} \mathrm{F} \\ 36^{\circ} \mathrm{C}+32=68^{\circ} \mathrm{F} & \end{array}$

$$
36^{\circ} \mathrm{C}+32=68^{\circ} \mathrm{F}
$$

$\begin{array}{llllll}\text { Anne is } 22^{\circ} \mathrm{F} \text { too high. } & 30 \times 9=270 & 54+32 & 30 \times 2=60 \\ \text { 2) } & \text { John } & \text { Anne } & 270 \div 5=54=86 & 60+30=90 \\ 30^{\circ} \mathrm{C} & 86^{\circ} \mathrm{F} & 90^{\circ} \mathrm{F} & +4^{\circ} \mathrm{F} & & \\ 20^{\circ} \mathrm{C} & 68^{\circ} \mathrm{F} & 70^{\circ} \mathrm{F} & +2^{\circ} \mathrm{F} & & 10 \times 9=90 \\ 10^{\circ} \mathrm{C} & 50^{\circ} \mathrm{F} & 50^{\circ} \mathrm{F} & 0^{\circ} \mathrm{F} & 90 \div 5=18 & 10 \times 2=20 \\ 0^{\circ} \mathrm{C} & 32^{\circ} \mathrm{F} & 30^{\circ} \mathrm{F} & -2^{\circ} \mathrm{F} & 0 \times 9=0 & 32\end{array}$

> This table shows Anne's method is
> higher for temperatures over $10^{\circ} \mathrm{C}$.

Comments

Pupil D correctly calculates the temperature in degrees Fahrenheit using both John's rule and Anne's rule for 20 degrees Celsius. He then systematically compares the differences between the two methods for $30^{\circ}, 10^{\circ}$ and 0°. This, together with his result for the first part, reveals a linear pattern in the differences that suggests his conclusion. Pupil D's solution is thus efficient and correct.

Probing questions and feedback

- Can you think of an algebraic or graphical approach to this problem?
- When would you recommend John's method and when Anne's method?

