2 Three assessment tasks and five sample responses on each

Text Messaging

1. How many text messages are sent if four people all send messages to each other?
2. How many text messages are sent with different numbers of people?
3. Approximately how many text messages would travel in cyberspace if everyone in your school took part?
4. Can you think of other situations that would give rise to the same mathematical relationship?

This was adapted from Sending texts - a task from the Nuffield Foundation's Applying Mathematical Processes project - see http://www.nuffieldcurriculumcentre.org/

Follow-up task for students

Look carefully at the following extracts of work from other students. Imagine you are their teacher. Go through each piece of work and write comments on each one.

- Have they chosen a sensible method?
- Are the calculations correct?
- Are the conclusions sensible?
- Is the work easy to understand?

Name	Comments
Tom	
Sam	
Chris	
Lily	

Now try to write out an answer that is better than all of them!

> Celia Send's one to Tracey $=1$ Traceysend's one to Celia $=1$
> Tracey send's one to maria $=1$ maria sends one to anne-moria $=1$ Anne-morie send's one to Celia $=1$ Celia sent's one to anne -marie =1 Maria send's one to Tracey $=1$ Tracey send's one to Anne marie $=1$ Maria send's one to Celia $=1$

Chris's answer

Lily's answer

Tom adds 8 move texts $=20$ altogether.
For more people you add extra rows and colums.

Marvin's answer

$4 \times 3=12 \quad$ So there are 12 messages with 4 people.
With eight people there will be $8 \times 7=56$ messages
With a thousand people there will be $1000 \times 999=999000_{\text {messes }}$
The formula is number of people x one less than this because you doit send a text to yourself.

Progression in key processes

Golden Rectangles

In the 19th century, many adventurers travelled to North America to search for gold.
A man named Dan Jackson owned some land where gold had been found.
Instead of digging for the gold himself, he rented plots of land to the adventurers.

Dan gave each adventurer four wooden stakes and a rope measuring exactly 100 metres.

Each adventurer had to use the stakes and the rope to mark off a rectangular plot of land.

1. Assuming each adventurer would like to have the biggest plot, how should he place his stakes?
Explain your answer.
Read the following proposition:
"Tie the ropes together! You can get more land if you work together than if you work separately."
2. Investigate whether the proposition is true for two adventurers working together, still using four stakes.
3. Is the proposition true for more than two people?

Explain your answer.

Follow-up task for students

Look carefully at the following extracts of work from other students. Imagine you are their teacher. Go through each piece of work and write comments on each one.

- Have they chosen a sensible method?
- Are the calculations correct?
- Are the conclusions sensible?
- Is the work easy to understand?

Name	Comments
Alvin	
Bernie	
Chris	
Danny	

Now try to write out an answer that is better than all of them!

Alvin's answer
(1)

If you want the biggest plot, I think you need the biggest area, so what lIdia was draw the rectangles out and I found out that the more equal it is the bigger the area.
(2) It is better to work on your own because if you work together there will be a bigger area but you will have to half it with the other person, for example, If you combine the ropes you will have 200 m , If you do 50×50 to find the area it will be $2500 \mathrm{~m}^{2}$ but you will need to half that with other person so that will give you $1250 \mathrm{~m}^{2}$, So you will have more to do. So it is easier to work on your own.
(3) No it is not true for move than 2 people, they will have to work harder.

Bernie's answer

Chris's answer
a $25 \times 25=625 \mathrm{~m}^{2}$

$$
\begin{aligned}
& 30 \times 20=600 \mathrm{~m}^{2} \\
& 40 \times 10=400 \mathrm{~m}^{2}
\end{aligned}
$$

He should place the stakes in a rectangular, because then he has the most land. But the rectangle need lobe $30 \times 20 \mathrm{~m}$.
b with two ropes of 100 m you can get o bigger amount of land. If you take $55 \mathrm{~m} \times 45 \mathrm{~m}$, you get more than the dubble a maint offland. $55 \times 45=24 i t s$, $2475 \mathrm{~m}^{2}: 2=1237.5 \mathrm{~m}^{2}$

1
c Yes, because you can make the plot of 1 and bigger in that way everyone has more land. If The plot of land is 80×70, the land is $5600 \mathrm{~m}^{2}$. $5600 \mathrm{~m}^{2}: 3=1866.67 \rightarrow 1866.7 \mathrm{~m}^{2}$ per person. That is more land.
(1) He should place his stakes in a square to give the biggest area like this $\frac{25}{25} \frac{25}{625}$
(2) If two adventurers work together they will have $200 \mathrm{~m}^{2}$ of rope so they can make a square twice as long and abide.

$$
=4 \times \text { area. }
$$

This is much better than $2 \times$ area.
(3) If three work togester they will have $300 \mathrm{~m}^{2}$ of rave so they can make a square three twines as long and wide

This is much better than $3 x$ area.
I think that the area goes up by square numbers each time.

Elsie's answer
a. 4×25 metres \rightarrow area $=25 \times 25=625 \mathrm{~m}^{2}$

$$
\begin{aligned}
& 2 \times 20 \& 2 \times 30 \rightarrow \text { area }=20 \times 30=600 \mathrm{~m}^{2} \\
& 2 \times 10 \& 2 \times 40 \rightarrow \text { area }=10 \times 40=400 \mathrm{~m}^{2}
\end{aligned}
$$

So 4×25 metres would make the biggest area.
b 2×100 metres of Rope $=200 \mathrm{~m}$.
4×50 metres \rightarrow area $=50 \times 50=2500 \mathrm{~m}^{2}$
$2 \times 20 \& 2 \times 00 \rightarrow$ area $=20 \times 00=1600 \mathrm{~m}^{2}$
$2 \times 30 \& 2 \times 70 \rightarrow$ area $=30 \times 70=2100 \mathrm{~m}^{2}$
$2 \times 40 \& 2 \times 60 \rightarrow$ area $=40 \times 60=2400 \mathrm{~m}^{2}$
$2 \times 10 \& 2 \times$ go \rightarrow area $=10 \times g o=g c o \mathrm{~m}^{2}$
So the proposition is true, working together will deliver much more land to dig for gold.
c for example. 300 metres of \& rope 4×75 metres \rightarrow area $=75 \cdot 75=5625 \mathrm{~m}^{2}$
So how longer the rope is, how bigger the land will be.
ك 400 metres of rope (4 people working together) (4×100 metres \rightarrow area $=100 \cdot 100=10000 \mathrm{~m}^{2}$

Progression in key processes

Counting Trees

This diagram shows some trees in a plantation.
The circles show old trees and the triangles show young trees.
Tom wants to know how many trees there are of each type, but says it would take too long counting them all, one-by-one.

1. What method could he use to estimate the number of trees of each type? Explain your method fully.
2. On your worksheet, use your method to estimate the number of:
(a) Old trees
(b) Young trees

Follow-up task for students

Look carefully at the following extracts of work from other students. Imagine you are their teacher. Go through each piece of work and write comments on each one.

- Have they chosen a sensible method?
- Are the calculations correct?
- Are the conclusions sensible?
- Is the work easy to understand?

Name	Comments
Sarah	
Laura	
Jenny	
Woody	

Now try to write out an answer that is better than all of them!

Sample response: Sarah

Sample response: Laura

(2) a. Ord trees -641

Young trees -644

$$
\begin{array}{ll}
\text { width }-33 . & 33 \times 39=1287 \\
\text { congth-39. } & 1287 \div 2=643.5-644
\end{array}
$$

Sample response: Jenny
10 there are 38 trees in each column there are around 11 young trees and around 2701 a ones 33 trees in each row so

$$
\begin{aligned}
& 11 \times 33=363 \\
& 27 \times 33=\frac{891}{\frac{254}{1}}
\end{aligned}
$$

2.

a. $\quad 11 \times 33=363$ new trees.
bo $27 \times 33=891=01$ a trees.

Sample response: Woody

2 columns has 21 young trees

50 columns is approx
$50 \div 2=25$
$25 \times 21=$ amount of young trees $=525$
$25 \times 55=$ amount of old rices $=1,375$
rounded up
$\begin{array}{ll}\text { young } 530 \\ \text { old } & 1,380\end{array}$

Sample response: Amber
Counting trees

1. If Tom draws a 10×10 square round some trees and counts how many old and new there ace. There are 50 rows and 50 columns altogether so he must multiply by 25 . He could do this a few times to check and then take the average.
2.

| 53 old | $\times 25=1325$ old | |
| :--- | :--- | :--- | :--- |
| $28_{\text {new }}$ | $\times 25=700$ new | |
| $\frac{19 \text { spaces }}{100}$ | $\times 25=\frac{475}{2500}$ spaces | |
| | | $1325+1200 \div 2=1262.5$
 $700+875 \div 2=787.5$ |

check

$$
\begin{array}{lrr}
48 \text { old } \times 25=1200 \text { old } & \text { So about } 1263 \text { old trees } \\
35 \text { nell } \times 25=875 \text { new } & \text { and } 788 \text { newtrees } \\
\frac{17}{100} \text { spaes } \times 25=\frac{425 \text { spues }}{2500}
\end{array}
$$

Progression in key processes

	Representing	Analysing	Interpreting and evaluating	Communicating and reflecting
	Chooses a method, but this may not involve sampling. E.g. Counts all trees or multiplies the number of trees in a row by the number in a column.	Follows chosen method, possibly making errors. E.g. Does not account for different numbers of old and young trees or that there are gaps.	Estimates number of new and old trees, but answer given is unreasonable due to method and errors.	Communicates work adequately but with omissions.
	Chooses a sampling method but this is unrepresentative or too small. E.g. tries to count the trees in first row and multiplies by the number of rows.	Follows chosen method, mostly accurately. E.g. May not account for different numbers of old and young trees or that there are gaps.	Estimates number of new and old trees, but answer given is unreasonable due mainly to the method.	Communicates reasoning and results adequately, but with omissions.
	Chooses a reasonable sampling method.	Follows chosen method, mostly accurately.	Estimates a reasonable number of old and new trees in the plantation. The reasonableness of the estimate is not checked. E.g. by repeating with a different sample.	Explains what they are doing but explanation may lack detail.
	Chooses an appropriate sampling technique.	Follows chosen method accurately. Uses a proportional argument correctly.	Deduces a reasonable number of old and new trees in the plantation. There is some evidence of checking the estimate. E.g. Considers a different sampling method.	Communicates reasoning clearly and fully.

