2 Three assessment tasks and five sample responses on each

Text Messaging

- 1. How many text messages are sent if four people all send messages to each other?
- 2. How many text messages are sent with different numbers of people?
- 3. Approximately how many text messages would travel in cyberspace if everyone in your school took part?
- 4. Can you think of other situations that would give rise to the same mathematical relationship?

This was adapted from Sending texts – *a task from the Nuffield Foundation's* Applying Mathematical Processes *project* – *see http://www.nuffieldcurriculumcentre.org/*

Follow-up task for students

Look carefully at the following extracts of work from other students. Imagine you are their teacher. Go through each piece of work and write comments on each one.

- Have they chosen a sensible method?
- Are the calculations correct?
- Are the conclusions sensible?
- Is the work easy to understand?

Name	Comments
Tom	
0	
Sam	
Chris	
Lily	
Marvin	

Now try to write out an answer that is better than all of them!

Tom's answer

Celia Send's one to Tracey =1 Tracey send's one to Celia =1 Tracey send's one to Maria =1 Maria Send's one to anne-maria =1 Anne-marie send's one to Eelia =1 Celia send's one to anne-Marie =1 Maria send's one to anne-Marie =1 Tracey send's one to Anne-marie =1 to Celia =1 one laria Send's

Sam's answer

Chris's answer

Lily's answer

		Amy	Belinda	Suzie	Mary	Tom			
	Amy		Text	Text	Text	Text			
1	Belinda	Text		Text	Text	Text	= 12 lexts for 4 people		
	Suzie	Text	Text	_	Tex1	Text			
	Mary	Text	Text	Text		Text			
	Tom	Text	Text	Text	Text	-			
-7	Tom adds 8 more fexts = 20 altogether.								
Ŧ	for more p	eople y	on add	extra	rows	and	colums.		

Marvin's answer

Progression in key processes

		Representing	Analysing	Interpreting and evaluating	Communicating
		Represents some individual text messages that are sent.	Works out the number of text messages for four people correctly.	Says that everyone sends the same number of messages.	Shows how the answer was found.
PROGRESSION		Uses marks or diagrams to show the texts. Chooses to use repeated addition.	Increases the number of people in an organised way. Correctly works out the number of texts sent to different numbers of people.		Shows the method clearly and where the answers come from.
ESSION		Chooses to use multiplication to work out the number of texts sent.	Finds a correct pattern in the results. The reasoning is based on particular examples.	Explains the result for a number of people other than 4. Finds a correct rule for calculating the number of texts.	Explains how the rule links to the context of sending texts.
	7	Chooses to use algebra to show the general case.	The reasoning moves from looking at particular examples to more general cases.	Makes and justifies correct general statements relating the number of texts to the number of people. Makes and justifies statements for large numbers of students.	Writes a complete and concise summary with clear links to the original context. Discusses mathematical similarities and differences between sending texts and other contexts – e.g. matches in a football league.

Golden Rectangles

In the 19th century, many adventurers travelled to North America to search for gold.

A man named Dan Jackson owned some land where gold had been found.

Instead of digging for the gold himself, he rented plots of land to the adventurers.

Dan gave each adventurer four wooden stakes and a rope measuring exactly 100 metres.

Each adventurer had to use the stakes and the rope to mark off a rectangular plot of land.

 Assuming each adventurer would like to have the biggest plot, how should he place his stakes? Explain your answer.

Read the following proposition:

"Tie the ropes together! You can get more land if you work together than if you work separately."

- 2. Investigate whether the proposition is true for two adventurers working together, still using four stakes.
- 3. Is the proposition true for more than two people? Explain your answer.

Look carefully at the following extracts of work from other students. Imagine you are their teacher. Go through each piece of work and write comments on each one.

- Have they chosen a sensible method?
- Are the calculations correct?
- Are the conclusions sensible?
- Is the work easy to understand?

Name	Comments
Alvin	
Bernie	
Dernie	
Chris	
Danny	
Danny	
Elsie	

Now try to write out an answer that is better than all of them!

Alvin's answer

25 46 R 30 400 m2 10 10 25 20 625 B 600 m2 25 20 40 30 25 you want the biggest plot, If I think you need the biggest area, so what I did was draw the rectangles and I found out out that the more equal it is the bigger the area. better to work on your It is 0 own because if you work together will be a bigger area but there you will have to half the other person, For example, IF you combrane the ropes you will have 200m, IF you do so x so to Find the area it will be 2500m2 but you will need to half that with other person so that will give you 1250 m², so you will have more to do. so it is pasier to work on your own. it is not true for mone NO 3 than 2 people, they will have 60 harder UDOK.

Bernie's answer

~		ŧ	lengt	h3	40	400		(4	40	•	6	21	24	
0						• •	•	20	10	•	25 6	25	624	+]-4
	س ا	ill cha	nge t	he b	engH	. an	d se	e ha	w t	he A	nea ch	anges		
	1	length	10	20	30	40	50	25	26					
		Aver	400	600	100	400	X	625	624			_	_	
	50	a leng	th of	25	is b	est.					25		25	
D	IF	huo p	eo pie	wo	rka	par	+ #	ky (ger	15	625	2	62	5
	IF	they u	ork '		hu .s	بلهو			A.ie		125 st_neer	-		
		25		e	-	25		=	SD,	. 6	in from	n each	squa	ne)
		2	\$	2	5	1		we a side			this	for e	utra	
	50	m + 4 129	= 12 5m			th a	ide							
									62 .	<v 1<="" td=""><td>7.5 =</td><td>221</td><td>17.75</td><td>M2.</td></v>	7.5 =	221	17.75	M2.
	37	Sm				37.	5 m		01			- , ,		- m.
D	lt 3	peo l re	v	Γ	5		-		-	zr		0 m. n.0 = 25		Jad.
											5 0	50		

Chris's answer

	tel are a acce and
	$30 \times 20 = 600 \text{ m}^2$
	$100 \times 10 = 1000 \text{ m}^2$
H	e should place the states in a process, because the
	has the most land. But the eachangle need lobe
30	Dxzom.
b	With two ropes of 100 m. you can get a bigger
ooli	amount of land. Is you take 55 m x 45 m, you
	met man the duble a match of lead
	$(\mathbf{u}, \mathbf{u}) \in [\mathbf{u}, \mathbf{u})$ in $(\mathbf{u}, \mathbf{u}) \in [\mathbf{u}, \mathbf{u}]$
	get more than the dubble amount of land. 55xus=217
Π.	$2L_{1}Fm^{2}$: $2 = 1237.5m^{2}$
D	$21.75m^{2}.2 = 12.37.5m^{2}$
D C	
D C	yes, because you can make the plot of land
D C	Zuitsmi : 2 = 1237.5m² Yes, be cause you can make the plot of land bigger in that way everyone has more land.
D C	yes, because you can make the plot of land

Danny's answer

The should place his stakes in a square to give the biggest area like this 625m25 25 2) If two adventurers work together they will have 200m of rope so they can make a square twice as long and 25 25 while. 25 25 = 4x area 25 25 25 15 This is much better than 2x area. 3 If three work together they will have 300 m of rope so they can make a square three times as long and wide 25 25 25 -9x area 25 25 25 This is much better than 3x area I think that the area goes up by squares numbers each time.

Elsie's answer

4 x 25 metres -> area = 25 x 25 = 625 m²] ai 2×20 6 2 × 30 $\rightarrow 0$ (ea = 20 × 30 = 600 m² $2 \times 10 = 2 \times 40 = 3 \text{ area} = 10 \times 40 = 400 \text{ m}^2$ So 4 x 25 metres would make the biggest drea b 2 x 100 metres of Rope = 200 m. 4 x 50 metres → area = 50 x 50 = 2500 m3 2 × 20 & 2 × 00 -> area = 20 × 00 = 1600 m2 2 × 30 & 2 × 70 -> acea = 30 × 70 = 2100 m2 2 × 40 & 2 × 60 = alea = 40 × 60 = 2400 m2 $2 \times 10 \quad \text{B} \ 2 \times \text{gp} \rightarrow \text{area} = 10 \times \text{go} = \text{goo} \ \text{m}^2$ So the proposition is the working together will deliver much more land to dig for gold. C FOR example. 300 matries of \$ Rope 4 x 75 metres - area = 75.75 = 5625 m² So how longer the rope is how bigger the land will be 1400 metries of rope (4 people working together) (4 × 100 metres -) area = 100 - 100 = 10000 m2

Progression in key processes

	Representing	Analysing	Interpreting and evaluating	Communicating
	The student draws one or two rectangles with a perimeter of 100m.	The student works out the areas of their rectangles correctly.	The student draws several rectangles but not a square and the justification is incorrect or omitted.	The work is communicated adequately, but there are gaps and/or omissions.
PROGRESSION	Draws several rectangles.	Calculates the areas of their rectangles and attempts to come to some generalisation.	Realises that different shapes have different areas but comes to incorrect or incomplete conclusion.	The work is communicated clearly and the reasoning may be followed.
ON	Draws several, correct rectangles for an adventurer working alone and for 2 working together. May draw far too many rectangles.	Calculates the areas correctly and finds that a square is best for 1 adventurer and that 2 working together do better than alone.	Attempts to give some explanation for their findings.	The work is communicated clearly and the reasoning may be easily followed.
\bigvee	Draws an appropriate number of rectangles and collects the data in an organised way.	Calculates the correct areas, finds that a square is best for 1 adventurer and that 2 working together do better than alone. Finds a rule or pattern in their results.	Gives reasoned explanations for their findings.	Explains work clearly and may consider other shapes.

This diagram shows some trees in a plantation.

The circles \bullet show old trees and the triangles \blacktriangle show young trees. Tom wants to know how many trees there are of each type, but says it would take too long counting them all, one-by-one.

- 1. What method could he use to estimate the number of trees of each type? Explain your method fully.
- 2. On your worksheet, use your method to estimate the number of:
 - (a) Old trees
 - (b) Young trees

Look carefully at the following extracts of work from other students. Imagine you are their teacher. Go through each piece of work and write comments on each one.

- Have they chosen a sensible method?
- Are the calculations correct?
- Are the conclusions sensible?
- Is the work easy to understand?

Name	Comments
Sarah	
1	
Laura	
Jenny	
,	
Woody	
Amber	

Now try to write out an answer that is better than all of them!

Sample response: Sarah

Sample response: Laura

the number of (1 MIL 4 - you Old brees -647 Naung brees - 644 inth - 33 33x39= 1287 1287= 2= 6t3.5-644 а.

Sample response: Jenny

10 there are 38 trees	in each column
there are around	11 young trees
33 trees in each r	old ones
$11 \times 33 = 363$	010 10
$27 \times 33 = \frac{891}{27}$	
1254	
1	
	(33 = 363 = News trees.
3	
bo 27×33=891=	old trees.

Sample response: Woody

2 columns has 21 young trees 50 columns is approx 50 f 2 = 25 25 x 21 = amount of young trees = 525 25 x 55 = amount of young trees = 1,375 rounded up young 530 old 1,380

Sample response: Amber

Counting trees 1. If Tom draws a 10×10 square round some trees and counts how Many old and new there are. There are 50 rows and 50 columns altogether so he must multiply by 25. He could do this a few times to check and then take the average . 2. x 25 = 1325 old 53 old 28 new x 25 = 700 new 19 spaces x 25 = 475 spaces |325 + |200 - 2 = |262.5|7500 100 700+875 - 2= 787.5 check 48 old x 25 = 1200 old So about 1263 old trees 35 new x 25 = 875 new and 788 new Trees 17 spaces x 25 = 425 spaces 100 1500

Progression in key processes

		Representing	Analysing	Interpreting and evaluating	Communicating and reflecting
		Chooses a method, but this may not involve sampling. E.g. Counts all trees or multiplies the number of trees in a row by the number in a column.	Follows chosen method, possibly making errors. E.g. Does not account for different numbers of old and young trees or that there are gaps.	Estimates number of new and old trees, but answer given is unreasonable due to method and errors.	Communicates work adequately but with omissions.
PROGRESSION		Chooses a sampling method but this is unrepresentative or too small. E.g. tries to count the trees in first row and multiplies by the number of rows.	Follows chosen method, mostly accurately. E.g. May not account for different numbers of old and young trees or that there are gaps.	Estimates number of new and old trees, but answer given is unreasonable due mainly to the method.	Communicates reasoning and results adequately, but with omissions.
ON	5	Chooses a reasonable sampling method.	Follows chosen method, mostly accurately.	Estimates a reasonable number of old and new trees in the plantation. The reasonableness of the estimate is not checked. E.g. by repeating with a different sample.	Explains what they are doing but explanation may lack detail.
\bigvee		Chooses an appropriate sampling technique.	Follows chosen method accurately. Uses a proportional argument correctly.	Deduces a reasonable number of old and new trees in the plantation. There is some evidence of checking the estimate. E.g. Considers a different sampling method.	Communicates reasoning clearly and fully.